Silicon Nanowire FinFETs
نویسندگان
چکیده
Some of the fundamental problems of ultra-small MOSFETs beyond sub-10nm channel length are the electrostatic limits, source-to-drain tunnelling, carrier mobility degradation, process variations, and static leakage. The trend toward ultra-short gate length MOSFETs re‐ quires a more and more effective control of the channel by the gate leading to new device architecture. It appears that non-classical device architectures can extend the CMOS lifetime and provide solutions to continue scaling. In case of silicon-based CMOS technologies, pla‐ nar MOSFETs are limited to scaling beyond 15 nm technology node. As simple scaling of silicon CMOS becomes increasingly complex and expensive, there is considerable interest in increasing performance by using strained channels which can improve carrier mobility and drive current in a device. Multi-gate MOSFETs based on the concept of volume inversion are widely recognized as one of the most promising solutions for meeting the ITRS roadmap requirements. A wide variety of multi-gate architectures, including Double-Gate (DG), GateAll-Around (GAA), Pi-FET and Fin Field-Effect Transistors (FinFETs), rectangular or cylin‐ drical nanowire MOSFETs has been proposed in the literature. In all cases, these structures exhibit a superior control of short channel effects resulting from an exceptional electrostatic coupling between the conduction channel and the surrounding gate electrode. The nanowire (NW) transistors can be seen as the ultimate integration of the innovative nanodevices and is one of the candidates which have gained significant attention from both the device and cir‐ cuit developers because of its potential for building highly dense and high performance electronic circuits. Recent advances in nanoscale fabrication techniques have shown that semiconductor nanowires may become the candidate for next generation technologies. Si and Ge nanowire transistors are also important because of their compatibility with the CMOS technology.
منابع مشابه
Technology CAD of Nanowire FinFETs
The potential applications of semiconductor nanowire (NW) field-effect transistors as potential building blocks for highly downscaled electronic devices with superior performance are attracting considerable attention. In the area of Technology CAD (TCAD) of nanowire FinFETs, it is fair to say that there have been very little or no reports are available in the literature on TCAD modeling of nano...
متن کاملAmbipolar silicon nanowire FETs with stenciled-deposited metal gate
We report on a fully CMOS compatible fabrication method for ambipolar silicon nanowire FinFETs. The low thermal budget processing, compatible with monolithic 3D device integration, makes use of low pressure chemical vapor deposition (LPCVD) of amorphous Si (a-Si) and SiO2 layers as well as metal gate patterning using stencil lithography, demonstrated for the first time. FinFETs with stenciled A...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملEffect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملA Hybrid 3D Quantum Mechanical Simulation of FinFETs and Nanowire Devices
In this paper, we have carried out a numerical simulation of FinFETs. The model is based on 1D non-equilibrium Green’s function (NEGF) along the channel and 2-D Schrödinger equation in the confined cross section and provides insights into the performance of FinFETs with ultra small channel cross section. The simulation results of FinFETs show normal I-V characteristics with great potential in s...
متن کامل